Food, fish and campylobacteriosis

Alejandro de Jesús Cortés-Sánchez
Alejandro de Jesús Cortés-Sánchez
Contact Alejandro de Jesús Cortés-Sánchez

Centro de investigaciones biológicas del noroeste, enum.country.N/A

Published: 18.10.2020.

Volume 9, Issue 2 (2020)

pp. 394-406;

https://doi.org/10.7455/ijfs/9.2.2020.a10

Abstract

Food is a necessity of human beings, and the consumption of food is aimed at obtaining energy and nutrients necessary for the growth and proper functioning of the body. However, food can also be a vehicle for various diseases, and the causal agents can have physical, chemical or biological origin with relevance to health due to their incidence, mortality and negative consequences in the population. Bacteria are the main agents of biological origin associated with foodborne diseases. Among these microorganisms are species of the genus Campylobacter, which cause a zoonosis with one of the highest incidences globally, known as Campylobacteriosis. This document provides an overview of foodborne diseases, specifically the causal agents of Campylobacteriosis, including the different measures of control and prevention for this disease in different foods such as poultry, milk, meat, and fish, among others. It also covers the phenomenon of resistance to antimicrobials by these pathogens and the health implications to consumers. The above can generate and maintain safety practices in food production for the protection of public health in different regions around the world.

Keywords

References

1.
Alerte V, Cortes A, Diaz S, T, Vollaire J, Z, et al. Foodborne disease outbreaks around the urban chilean areas from 2005 to 2010. Revista Chilena De Infectologia. 2012. p. 26–31.
2.
Thaís Ferreira A, Paula Gabrielle Gonçalves S, D, Bioni Da Fonseca L, Caio Alves F, D, et al. Alterações microbianas dos produtos de pescado curados. PUBVET. 2017. p. 658–61.
3.
Becerra G, Plascencia Hernandez A, Luevanos A, Dominguez M, Hernandez I. Antimicrobial resistance mechanism in bacteria. Enfermedades Infecciosas y Microbiologia; 2009. p. 70–6.
4.
Behringer M, Miller W, Oyarzabal O. Typing of campylobacter jejuni and campylobacter coli isolated from live broilers and retail broiler meat by flaa-rflp, mlst, pfge and rep-pcr. Journal of Microbiological Methods. 2011. p. 194–201.
5.
Cabello R. Microbiologia y parasitologia humana/microbiology and human parasitology: Bases etiologicas de las enfermedades infecciosas y parasitarias/etiological basis of infectious and parasitic diseases. 2007.
6.
Cdc. Campylobacter (campylobacteriosis). centers for disease control and prevention. national center for emerging and zoonotic infectious diseases (ncezid). division of foodborne, waterborne, and environmental diseases (dfwed). u.s. department of health & human services. usa.gov. 2017.
7.
Cecilia H, Arreola M, Graciela C. Campylobacter jejuni: ?A forgotten bacteria? Its situation in Mexico. Enfermedades Infecciosas y Microbiología. 2013. p. 77–84.
8.
Cervantes García E, Cravioto A. Campylobacter y enfermedades asociadas. Revista de la Facultad de Medicina UNAM. 2007. p. 31–5.
9.
IJFS October. 2020. p. 394–406.
10.
Cires M. La resistencia a los antimicrobianos, un problema mundial. Revista Cubana de Medicina General Integral. 2002. p. 165–8.
11.
Dallal M, Doyle M, Rezadehbashi M, Dabiri H, Sanaei M, Modarresi S, et al. Prevalence and antimicrobial resistance profiles of salmonella serotypes, campylobacter and yersinia spp. isolated from retail chicken and beef, tehran, iran. Food Control. 2010. p. 388–92.
12.
De Nes F, Riboldi G, Frazzon A, Azevedo P, Frazzon J. Antimicrobial resistance and investigation of the molecular epidemiology of listeria monocytogenes in dairy products. Revista da Sociedade Brasileira de Medicina Tropical. 2010. p. 382–5.
13.
De Boer P, Rahaoui H, Leer R, Montijn R, Van Der Vossen J. Real-time pcr detection of campylobacter spp.: A comparison to classic culturing and enrichment. Food Microbiology. 2015. p. 96–100.
14.
Dudzic A, Urban-Chmiel R, Stepien-Pysniak D, Dec M, Puchalski A, Wernicki A. Isolation, identification and antibiotic resistance of campylobacter strains isolated from domestic and free-living pigeons. British Poultry Science. 2016. p. 172–8.
15.
Efsa. Campylobacter -european food safety authority. european union. 2018.
16.
Elika. Campylobacter. retrieved from elika -fundación vasca para la seguridad agroalimentaria. 2013.
17.
Epps S, Harvey R, Hume M, Phillips T, Anderson R, Nisbet D. Foodborne campylobacter: Infections, metabolism, pathogenesis and reservoirs. International Journal of Environmental Research and Public Health. 2013. p. 6292–304.
18.
Espinosa L, Varela C, Martinez EV, Cano R. Brotes de enfermedades transmitidas por alimentos. espaça, 2008-2011 (excluye brotes hidricos). Boletin Epidemiologico Semanal. 2014. p. 130–45.
19.
Fao. Organización de las naciones unidas para la agricultura y la alimentación/ food and agriculture organization. el pescado fresco: Su calidad y cambios de su calidad. fao documento técnico de pesca 348. editado por h.h. huss. Laboratorio Tecnológico. Ministerio de Pesca. Dinamarca. Revista peruana de medicina experimental y salud publica. Food and Agriculture Organization of the United Nations; 1998. p. 121–7.
20.
Ferre I. Anisakiosis y otras zoonosis parasitarias transmitidas por consumo de pescado. Revista AquaTIC. 2016.
21.
Claver F, S. Food and waterborne parasitic diseases more frequent in spain: Incidence, prevention and comparison with virus and bacteria diseases. 2000. p. 293–305.
22.
Frasao B, Marin V, Conte-Junior C. Comprehensive Reviews in Food Science and Food Safety. 2017. p. 721–34.
23.
Fuente-Salcido N, Corona J. Inocuidad y bioconservación de alimentos. Acta Universitaria. 2010. p. 43–52.
24.
IJFS October. 2020. p. 394–406.
25.
Vega G, Klotz Ceberio F, Mantilla Pulido B, Ramírez Rueda J, Romero Prada R, J. 2013.
26.
Garcia-Huidobro D, Carreno M, Alcayaga S, Ulloa J. Clinical and epidemiological description of severe outbreak of foodborne infection by salmonella enteritidis. Revista Chilena De Infectologia. 2012. p. 132–7.
27.
Gentile C. Manual de buenas prácticas higiénico-sanitarias-productos pesqueros la Alimentación/ Food and Agriculture Organization (FAO). 2010.
28.
Gonzalez-Hein G, Cordero N, Garcia P, Figueroa G. Molecular analysis of fluoroquinolones and macrolides resistance in campylobacter jejuni isolates from humans, bovine and chicken meat. Revista Chilena De Infectologia. 2013. p. 135–9.
29.
Gutierrez Castillo A, Paasch Martinez L, Calderon Apodaca N. Salmonellosis and campylobacteriosis, the most prevalent zoonosis in the world. Veterinaria Mexico. 2008. p. 81–90.
30.
Hunt Jan M, Abeyta C, Tran T. International standard. second edition 2017-06. microbiology of the food chain -horizontal method for detection and enumeration of Campylobacter spp. -part 1: Detection method. 2001.
31.
Jorquera D, Galarce N, Borie C. The challenge of controlling foodborne diseases: Bacteriophages as a new biotechnological tool. Revista Chilena De Infectologia. 2015. p. 678–88.
32.
Lahti E, Löfdahl M, Ågren J, Hansson I, Olsson Engvall E. Confirmation of a campylobacteriosis outbreak associated with chicken liver pâté using pfge and wgs. Zoonoses and Public Health. 2017. p. 14–20.
33.
Lapierre L. Factores de virulencia asociados a especies zoonoticas de campylobacter spp. Avances en medicina veterinaria. 2013. p. 25–31.
34.
Mandrell R, Harden L, Bates A, Miller W, Haddon W, Fagerquist C. Speciation of campylobacter coli, c-jejuni, c-helveticus, c-lari, c-sputorum, and c-upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology. 2005. p. 6292–307.
35.
Romero-Jarero M, Del J, Negrete-Redondo P, M. Presence of gram negative bacteria in fish muscle of commercial importance in the mexican caribbean zone. Revista Mexicana De Biodiversidad. 2011. p. 599–606.
36.
Mardones P, Lopez-Martin G, J. Implicancias de campylobacter spp. como patageno alimentario. 2017. p. 33.
37. ?
option = com content % 5C & view = article % 5C & id = 10564 % 5C % 3A2015 -buenas -practicascontrol -operaciones % 5C &. 2020. p. 394–406.
38.
Palomino C, Muñoz Y. Molecular techniques for detection and identification of pathogens in food: Advantages and limitations. Revista peruana de medicina experimental y salud publica. 2014. p. 535–46.
39.
Park S, Hanning I, Jarquin R, Moore P, Donoghue D, Donoghue A, et al. Multiplex pcr assay for the detection quantification of campylobacter spp., escherichia coli o157:h7, and salmonella serotypes in water samples. Fems Microbiology Letters. 2011. p. 7–15.
40.
Pérez-Cano H, Robles-Contreras A, Peña Y, Espino Hernández M, Leyva Castillo V. Resistencia antimicrobiana en salmonella y e. coli aisladas de alimentos: Revisión de la literatura. Panorama Cuba y salud. 2013. p. 30–8.
41.
Racua. Normas y certificaciones. red de acuicultura de las américas. organización de las naciones unidas para la alimentación y la agricultura (fao). 2018.
42.
Rodriguez Ceniceros R, Gomez Hernandez F, Vazquez Sandoval H. Campylobacter and salmonella present in poultry on sale at gomez palacio durango, mexico. 2016. p. 17.
43.
Rodriguez V, Guzmon Osorio L, Verjan N. Campylobacter spp. in poultry products and its impact in public health. Ces Veterinary Medicine and Y Zootechnics. 2015. p. 203–13.
44.
Rojas-Herrera R, González-Flores T. Detection and identification by means of the polymerase chain reaction of bacteria causing food-transmitted diseases. Bioquimia. 2006. p. 69–76.
45.
Saa. %5Ctextit % 7BCampylobacter%7D%5C%20ISO%5C% 2010272-1%5C%202017.pdf SAA. 2017.
46.
Silva R, Abrantes M, Nascimento J, Pinheiro C, Filgueira L, Silva J. Qualidade higienico-sanitaria da tilapia (oreochromis spp.) fresca e congelada em mercados publicos. Ciência Animal Brasileira. 2016. p. 574–80.
47.
Soares K, Gonçalves A. Qualidade e seguraça do pescado. Revista do Instituto Adolfo Lutz (Impresso). 2012. p. 1–10.
48.
Taboada E, Clark C, Sproston E, Carrillo C. Current methods for molecular typing of campylobacter species. Update On Methodologies To Study Campylobacter Species. 2013. p. 24–31.
49.
Tafur J, Torres J, Villegas M. United states department of agriculture -food safety and inspection service (fsis). mlg 41.04. isolation and identification of Campylobacter jejuni/coli/lari from poultry rinse, sponge and raw product samples. Infectio. 2008. p. 217–26.
50.
Weiler N, Orrego M, Alvarez M, Huber C, Ortiz F, Nunez L, et al. Memorias del Instituto de Investigaciones en Ciencias de la Salud. 2017. p. 64–72.
51.
Who. World health organization /organización mundial de la salud. inocuidad de los alimentos. nota descriptiva. online, access date: March 30. 2017.
52.
Wieczorek K, Osek J. Antimicrobial resistance mechanisms among campylobacter. Biomed Research International. 2013.
53.
IJFS October. 2020. p. 394–406.

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by