Variation of Physicochemical Characteristics of Tomato Under Different Traditional Forms of Conservation

Rafael Francisco Nanelo ,
Rafael Francisco Nanelo
Contact Rafael Francisco Nanelo

Higher Polytechnic Institute of Gaza (ISPG),

António Elísio José
António Elísio José

Higher Polytechnic Institute of Gaza (ISPG),

Published: 18.04.2023.

Volume 12, Issue 1 (2023)

pp. 112-122;

https://doi.org/10.7455/ijfs/12.1.2023.a8

Abstract

Tomato is a fruit rich in vitamins and minerals, contains vitamin C and flavonoids, which prevent heart disease, strokes, chickenpox and cancer. In the world, tomato is considered as one of the main popular fresh products. Inappropriate storage can cause high losses in quantity and quality. Storage mechanisms, as well as, conservation methods can play a significant role to reduce postharvest losses by maintaining products and ingredients in an environment that protects their integrity. Drying, curing and freezing are some methods of conservation. The study evaluated the physicochemical quality of tomato, variety CAL J, exposed to different conservation techniques and environment. This study used a 2x3 factorial design with 6 treatments: A, tomato stored at room temperature (25±1 °C) without acidification; B, acidified tomato (pH=3.2) stored at room temperature (25±1 °C); C, tomato stored in a refrigerator (8°C) without acidification; D, acidified tomato (pH=3.2) stored in a refrigerator (8 °C); E, tomato stored in an underground silo (19±1°C) without acidification; and F, acidified tomato (pH=3.2) stored in an underground silo (19±1 °C). They were evaluated over 60 days, for moisture, titratable acidity soluble solids (oBrix), and lycopene content Data were analysed with R at the 95% confidence level. Moisture ranged from 29.7% to 82.8%, °Brix 1.9 to 7.1, pH 3.17 to 4.02, titratable acidity 0.2 to 1.9% and lycopene 15.41 to 51.74 µg/g. All treatments of the tomatoes showed stability of its properties. The greatest conservation was with treatments A and B.

Keywords

References

1.
Abreu W, Piccolo M, Lopes C, Malfitano B, Pereira M, Vilas Boas E, et al. Características físicas e químicas de tomates secos em conserva. Boletim do Centro de Pesquisa de Processamento de Alimentos. p. 34850.
2.
Adegbola J, Awagu F, Adu E, Anugwom I, Ishola D, Bodunde A. Investment opportunities in tomato processing in Kano. Northern Nigeria. Global Advanced Research Journal of Agricultural Science. 2012. p. 288–97.
3.
Agbor A, Naidoo S. Ethnomedicinal plants used by traditional healers to treat oral health problems in cameroon. Evidence-based Complementary and Alternative. Medicine. 2015.
4.
Alessi E, Carmo L, Silva P, Spoto M. Processo produtivo de tomate seco obtido por energia solar e convencional a partir de minitomates congelados [Number: 2]. Revista Brasileira de Tecnologia Agroindustrial. 2013. p. 1049–61.
5.
Almeida I, Lima M, Souza L. Desenvolvimento de secador solar construído a partir de material reciclável. HOLOS. 2016. p. 197–205.
6.
Aoac International. Official methods of analysis of AOAC international. 2010.
7.
Bashir K, Bawa J, Mohammed I. Efficacy of leaf extract of drumstick tree (Moringa Oleifera lam.) On the growth of local tomato (Lycopersicon esculentum). IOSR Journal of Pharmacy and Biological Sciences. 2014. p. 74–9.
8.
Brummell D, Harpster M. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology. 2001. p. 311–39.
9.
De Araujo D. Efeitos de armazenamento em embalagens plásticas local refrigerado e temperatura ambiente na qualidade de tomate. Anuário Pesquisa E Extensão Unoesc São Miguel Do Oeste. 2018.
10.
Emana B, Afari-Sefa V, Nenguwo N, Ayana A, Kebede D, Mohammed H. Agriculture Food Security. 2017.
11.
Faostat. Food and Agriculture Organization of the United Nations. Agricultural production statistics. 2020.
12.
Ganje M, Jafari S, Dusti A, Dehnad D, Amanjani M, Ghanbari V. Modeling quality changes in tomato paste containing microencapsulated olive leaf extract by accelerated shelf life testing. Food and Bioproducts Processing. 2016. p. 12–9.
13.
IV RGPH 2017 -dados definitivos do IV recenseamento geral da população e habitação. Instituto Nacional de Estatística; 2017.
14.
Jafari S, Amanjani M, Ganjeh M, Katouzian I, Sharifi N. The influence of storage time and temperature on the corrosion and pressure changes within tomato paste cans with different filling rates. Journal of Food Engineering. 2018. p. 32–7.
15.
Kakubari S, Sakaida K, Asano M, Aramaki Y, Ito H, Yasui A. Determination of Lycopene concentration in fresh tomatoes by spectrophotometry: A collaborative study. Journal of AOAC International. 2020. p. 1619–24.
16.
Kangire A, Musana S, Asea G, Otim A, Aisu G, Logose M, et al. A guide to effective harvesting, hanadling and quality marketing of tomato in uganda. Postharvest Handling of Tomato in Africa. 2016. p. 55–68.
17.
Kereth G, Lyimo M, Mbwana H, Mongi, Richard, Ruhembe C. Assessment of post-harvest handling practices: Knowledge and losses of fruits in bagamoyo district of tanzania. J.Food Qual. Manag. 2013. p. 8–15.
18.
Kitinoja L, Kader A. Measuring postharvest losses in fruits and vegetables in developing countries. 2015.
19.
Lacerda M, Vale B, Almeida A, Teodoro M, Bezerra Dos Santos V. Caracterização física e físico-química de tomates orgânicos utilizando diferentes compostos. Enciclopédia Biosfera. 2016. p. 240–9.
20.
Mae. 2014.
21.
Meloni P, Stringueta P. Produção de tomate seco em conserva e shiitake desidratado. 2004.
22.
Ochida C, Itodo A, Nwanganga P. A review on postharvest storage, processing and preservation of tomatoes (Lycopersicon esculentum Mill). Asian Food Science Journal. 2019. p. 1–10.
23.
O’neill M, Carroll Y, Corridan B, Olmedilla B, Granado F, Blanco I, et al. A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. British Journal of Nutrition. Cambridge University Press; 2001. p. 499–507.
24.
Palet J. Alterações físico-químicas e microbiológicas num produto à base de tomate embalado em Doypack, ao longo do tempo de prateleira [Master’s thesis. 2012.
25.
Pinheiro J, Gonçalves E, Silva C. Alternative technologies for tomato post-harvest quality preservation. CABI Reviews. 2013. p. 1–15.
26.
Queji M, Pessoa L. Influência do tratamento osmótico na produção de tomate desidratado [Number: 1]. Revista Brasileira de Tecnologia Agroindustrial. 2011. p. 282–92.
27.
Rodrigues M, Dornelles A, Oliveira S, Moraes M, Lisboa F, Silva D, et al. Características físico-químicas de frutos de 25 cultivares de tomateiro tipo cereja. Horticultura brasileira. 2008. p. 26.
28.
Shi J, Le Maguer M. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Critical Reviews in Food Science and Nutrition. 2000. p. 1–42.
29.
Silva G. Processamento do tomate (Lycopersicum exculentum) seco com substituição do cloreto de sódio pelo cloreto de potássio: Estudo da avaliação da desidratação osmótica seguida de secagem [Doctoral dissertation. 2016.
30.
Soto-Zamora G, Yahia E, Brecht J, Gardea A. Effects of postharvest hot air treatments on the quality and antioxidant levels in tomato fruit. Food Science and Technology. 2005. p. 657–63.
31.
Srivalli R, Kumari B, Maheswari K, Suneetha W, Prabhakar B. Shelf life studies of tomato powder incorporated cold extrudates. International Journal of Current Microbiology and Applied Sciences. 2017. p. 112–22.

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by