Issue image

More articles from Volume 9, Issue 1, 2020

Evaluation of growth and cereulide production by Bacillus cereus isolated from cooked rice

Evaluation of growth and cereulide production by Bacillus cereus isolated from cooked rice

Chemical constituents in leaves and aroma products of Nicotiana rustica L. tobacco

Zizyphus lotus (L.) extracts as prebiotics in the aggregation and adhesion of probiotic and inhibition of pathologic bacteria from patients with colorectal cancer

Effect of olive pulp enrichment on physicochemical and antioxidant properties of wheat bread

Citations

Crossref Logo

15

Crossref Logo

Venelina Popova, Tanya Ivanova, Albena Stoyanova, Violeta Nikolova, Tsveta Hristeva, Valtcho D. Zheljazkov

(2020)

GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species

Molecules, 25(11)

10.3390/molecules25112617

Crossref Logo

Caiqiong Yang, Rayko Halitschke, Sarah E O'Connor

(2024)

OXIDOSQUALENE CYCLASE 1 and 2 influence triterpene biosynthesis and defense in Nicotiana attenuata

Plant Physiology, 194(4)

10.1093/plphys/kiad643

Crossref Logo

Bo-Ka Xiang, Qi Li, Yong-Gang Zhang, Sheng-Hua Ying

(2024)

Transcriptomic Insights into the Physiological Aspects of the Saprotrophic Fungus Penicillium citrinum During the Spoilage of Tobacco Leaves

Journal of Pure and Applied Microbiology, 18(3)

10.22207/JPAM.18.3.26

Crossref Logo

Mansi Bhavsar, Naman Mangukia, Saumya Patel, Rakesh Rawal, Archana Mankad

(2022)

Unraveling the miRnome of Nicotiana rustica (Aztec tobacco) - A Genomewide computational assessment

Plant Gene, 32()

10.1016/j.plgene.2022.100378

Crossref Logo

Marija Banožić, Ines Banjari, Ivana Flanjak, Mate Paštar, Jelena Vladić, Stela Jokić

(2021)

Optimization of MAE for the Separation of Nicotine and Phenolics from Tobacco Waste by Using the Response Surface Methodology Approach

Molecules, 26(14)

10.3390/molecules26144363

Crossref Logo

(2024)

Studies in Natural Products Chemistry, 80()

10.1016/B978-0-443-15589-5.00011-6

Crossref Logo

Caiqiong Yang, Rayko Halitschke, Sarah E O’Connor, Ian T Baldwin

(2024)

Roles of three cytochrome P450 monooxygenases in triterpene biosynthesis and their potential impact on growth and development

Plant Physiology, 196(2)

10.1093/plphys/kiae399

Crossref Logo

Vinda Maharani Patricia, Aulia Fikri Hidayat, Taufik Muhammad Fakih

(2024)

Molecular simulation-based evaluation of anti-inflammatory properties of natural compounds derived from tobacco (Nicotiana tabacum L.): Computational multi-target approaches

Pharmacia, 71()

10.3897/pharmacia.71.e132095

Crossref Logo

Oscar K. K. Bedzo, Lalitha D. Gottumukkala, Giuseppe Lo Sasso, Kacper Kaminski, Walter Schlage, Fernando Goffman, Nikolai Ivanov, Julia Hoeng, Daniel J. Hayes

(2024)

Process development for efficient pectin extraction from tobacco residues and its characterisation

Biomass Conversion and Biorefinery, 14(23)

10.1007/s13399-023-04750-4

Crossref Logo

Verónica S. Lema

(2023)

Cuando el diablo mete la cola: k´horo, chamanismos y mundos liminales en los Andes centro sur

Revue d’ethnoécologie, (23)

10.4000/ethnoecologie.9765

Crossref Logo

Jie Chen, Yan Li, Xian He, Fangchan Jiao, Meiling Xu, Binbin Hu, Yan Jin, Congming Zou

(2021)

Influences of different curing methods on chemical compositions in different types of tobaccos

Industrial Crops and Products, 167()

10.1016/j.indcrop.2021.113534

Crossref Logo

Ebenezer Adeola Ashamu, Adeniyi Noah Olalere, Jacob Adewale Siyanbade, Olaniyi Taiwo Olayemi

(2024)

Efficacy of Ascorbic Acid on Anti-Infertility Effects of Alcoholic Extract of Nicotiana Tabacum Leaf in Male Wistar Rat

International Journal of Innovative Science and Research Technology (IJISRT), ()

10.38124/ijisrt/IJISRT24JUL1788

Crossref Logo

Wen Song, Xi Chen, Jun Yu, Jingyu Qiao, Jinpeng Yang, Xiong Chen, Zhi Wang

(2024)

Effects of Bacillus altitudinis inoculants on cigar tobacco leaf fermentation

Frontiers in Bioengineering and Biotechnology, 12()

10.3389/fbioe.2024.1417601

Crossref Logo

Monika Agacka-Mołdoch, Teresa Doroszewska

(2024)

Importance and maintenance of Nicotiana genetic resources

Current Agronomy, 53(1)

10.2478/cag-2024-0012

Chemical constituents in leaves and aroma products of Nicotiana rustica L. tobacco

Venelina Popova ,
Venelina Popova
Contact Venelina Popova

Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies , Plovdiv , Bulgaria

Tanya A. Ivanova ,
Tanya A. Ivanova

Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies Bulgaria

Albena S. Stoyanova ,
Albena S. Stoyanova

Department of Tobacco, Sugar, Vegetable and Essential Oils, University of Food Technologies Bulgaria

Violeta V. Nikolova ,
Violeta V. Nikolova

Tobacco and Tobacco Products Institute , Markovo , Bulgaria

Margarita H. Docheva ,
Margarita H. Docheva

Tobacco and Tobacco Products Institute , Markovo , Bulgaria

Tzveta H. Hristeva ,
Tzveta H. Hristeva

Tobacco and Tobacco Products Institute , Markovo , Bulgaria

Stanka T. Damyanova ,
Stanka T. Damyanova

Angel Kanchev University of Russe , Razgrad , Bulgaria

Nikolay P. Nikolov
Nikolay P. Nikolov

Tobacco and Tobacco Products Institute , Markovo , Bulgaria

Published: 18.04.2020.

Volume 9, Issue 1 (2020)

pp. 146-159;

https://doi.org/10.7455/ijfs/9.1.2020.a2

Abstract

Nicotiana rustica L. (Aztec tobacco) is the only Nicotiana species, except common tobacco (N. tabacum L.), which is cultivated for tabacco products. The leaves of N. rustica, however, accumulate various specialized metabolites of potential interest. Therefore, the objective of this study was to evaluate certain classes of metabolites (by HPLC and GC-MS) in the leaves, the essential oil (EO), concrete and resinoid of N. rustica. Three pentacyclic triterpenes were identified in the leaves (by HPLC): betulin (252.78 µg g-1), betulinic (182.53 µg g-1) and oleanolic  (69.44 µg g-1) acids. The dominant free phenolic acids in the leaves (by HPLC) were rosmarinic (4257.38 µg g-1) and chlorogenic (1714.40 µg g-1), and conjugated forms of vanillic (3445.71 µg g-1), sinapic (1963.11 µg g-1), and syringic (1784.96 µg g-1). The major flavonoids in the leaves were luteolin (960.44 µg g-1), apigenin (880.66 µg g-1) and hyperosid (780.72 µg g-1). The GS-MS profiling of the EO identified 19 components and the major ones were phytol (43.68 %), solanone (5.54 %), cis-5-butyl-4-methyldihydrofuran-2(3H)-one (5.23 %), dihydro-β-ionone (4.25 %), α-ionene (3.54 %),and β-damascenone (3.03 %). The major volatiles in the concrete were  isoamyl alcohol (28.82 %), oxynicotine (9.02 %), phytol (7.80 %), 4-mеthyl-1-penthanol (6.33 %), cotinine (5.55 %) and 3-metyl-3-penthanol (4.09 %). Resinoid composition was dominant by nicotine (39.75 %), phytol (11.23 %), eicosane (4.88 %), diethyl phthalate (4.19 %), dibutyl phthalate (3.48 %) and solanone (3.27 %). Concrete and resinoid showed weak antibacterial activity . These results create grounds for considering N. rustica as a source to obtain aroma or other bioproducts.

Keywords

References

1.
Sisson V, Severson R. Alkaloid composition of the Nicotiana species. Beitrage zur Tabakforschung International/Contributions to Tobacco Research. 1990;(6):327–39.
2.
Marchev A, Georgiev V, Badjakov I, Kondakova V, Nikolova M, Pavlov A. Triterpenes production by rhizogenic callus of Salvia Scabiosifolia Lam. obtained via Agrobacterium Rhizogenes mediated genetic transformation. Biotechnology & Biotechnological Equipment. 2011;(1):30–3.
3.
Marchev A, Georgiev V, Ivanov I, Badjakov I, Pavlov A. Two-phase temporary immersion system for Agrobacterium rhizogenes genetic transformation of sage. Salvia tomentosa Mill) Biotechnology Letters. 2011;(9):1873–8.
4.
Murkute A, Sahu M, Mali P, Rangari V. Development and evaluation of formulations of microbial biotransformed extract of tobacco leaves for hair growth potential. Pharmacognosy Research. 2010;(5):6.
5.
Parikh N, Mandal A, Bhatia D, Siveen K, Sethi G, Bishayee A. Oleanane triterpenoids in the prevention and therapy of breast cancer: Current evidence and future perspectives. Phytochemistry Reviews. 2014;(4):793–810.
6.
Patlolla J, Rao C. Triterpenoids for cancer prevention and treatment: Current status and future prospects. Current Pharmaceutical Biotechnology. 2012;(1):147–55.
7.
Popova V, Gochev V, Girova T, Iliev I, Ivanova T, Stoyanova A. Ex-traction products from tobacco-aroma and bioactive compounds and activities. Current Bioactive Compounds. 2015;(1):31–7.
8.
Raguso R, Levin R, Foose S, Holmberg M, Mcdade L. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry. 2003;(3):265–84.
9.
Rodgman A, Perfetti T. The chemical components of tobacco and tobacco smoke. 2016;
10.
Saitoh F, Noma M, Kawashima N. The alkaloid contents of sixty nicotiana species. Phytochemistry. 1985;(3):477–80.
11.
Schlotzhauer W, Horvat R, Chortyk O, Nottingham S, Jackson D. Comparison of the volatile flower oils of Nicotiana rustica and N. forgetiana. Journal of Essential Oil Research. 1995;(3):265–9.
12.
Kurucu S, Kartal A, Erenmemişoglu A. Leaf chemistry-basic chemical constituents of tobacco leaf and differences among tobacco types. FABAD Journal of Pharmaceutical Sciences. 1998;265–84.
13.
Stanfill S, Oliveira Da Silva A, Lisko J, Lawler T, Kuklenyik P, Tyx R, et al. Comprehensive chemical characterization of rape tobacco products: Nicotine, un-ionized nicotine, tobacco-specific n ’-nitrosamines, polycyclic aromatic hydrocarbons, and flavor constituents. Food and Chemical Toxicology. 2015;50–8.
14.
Stoyanova A, Georgiev E, Atanasova T. A handbook for laboratory practice in essential oils. 2007;
15.
Tatarchenko I, Mokhnachev I, Kasyanov G. Chemistry of subtropical and food products: A handbook for students. 2003;5–79.
16.
IJFS April. 2020;159.
17.
Winter J. Tobacco use by native north americans : Sacred smoke and silent killer. 2000;387–434.
18.
Winterhalter P, Rouseff R. Carotenoid-derived aroma compounds: An introduction. 2001;1–17.
19.
Yadav R, Rathi M, Pednekar A, Rewachandani Y. A detailed review on Solanaceae family. European Journal of Pharmaceutical and Medical Research. 2016;(1):369–78.
20.
Zaika L. Spices and herbs: Their antimicrobial activity and its determination. Journal of Food Safety. 1988;(2):97–118.
21.
Zhang X, Gao H, Zhang L, Liu D, Ye X. Extraction of essential oil from discarded tobacco leaves by solvent extraction and steam distillation, and identification of its chemical composition. Industrial crops and products. 2012;162–9.
22.
Zhou R, Li DL, Feng GL, Li GY. A new sesquiterpene glucoside from Nicotiana rustica L. Natural Product Research. 2013;(14):146–59.
23.
Georgiev E, Stoyanova A. A guide for the specialist in aromatic industry. 2006;
24.
Alagić S, Selekcija ;, Palić R, Stojanović G, Nikolić M. Chemical composition and antimicrobial activity of the essential oil of the oriental tobacco yaka. Journal of Essential Oil Research. 2002;(3):230–2.
25.
Chemical composition of N. rustica L. tobacco 157. 2020;146–59.
26.
Andersson C, Wennstrom P, Gry J. Nicotine alkaloids in solanaceous food plants. TemaNord. 2003;1–37.
27.
Bakht J, Azra & Shafi M. Antimicrobial potential of different solvent extracts of tobacco (nicotiana Rustica) against gram negative and positive bacteria. Pakistan Journal of Botany. 2013;(2):643–8.
28.
Bauer K, Garbe D, Surburg H. Common fragrance and flavor materials. Preparation, Properties and Uses. 2001;
29.
Budzianowski J. Tobacco-a producer of recombinant interferons. Przeglad lekarski. 2014;639–43.
30.
Chowański S, Adamski Z, Marciniak P, Rosiński G, Büyükgüzel E, Büyükgüzel K, et al. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids Toxins. 2016;(3).
31.
Digrak M, Alma M, Ilçim A. Antibacterial and Antifungal Activities of Turkish Medicinal Plants. Pharmaceutical Biology. 2001;(5):346–50.
32.
Djordjevic M, Doran K. Nicotine psychopharmacology. 2009;61–82.
33.
Furbee B. Clinical neurotoxicology ebook: Syndromes, substances, environments, expert consult-online and print. 2009;523–42.
34.
Adams R. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. 2001;
35.
Hristeva T, Nikolov E. International science conference, held at the union of scientists, stara zagora. 2006;152–6.
36.
Huie C. A review of modern samplepreparation techniques for the extraction and analysis of medicinal plants. Analytical and Bioanalytical Chemistry. 2002;(1–2):23–30.
37.
Ibrahim M, Aliyu A, Abusufiyanu A, Bashir M, Sallau A. Inhibition of Naja nigricolis (reinhardt) venom protease activity by Luffa egyptiaca (mill) and Nicotiana rustica (linn) extracts. Indian Journal of Experimental Biology. 2011;(7):552–4.
38.
Ivanov I, Vrancheva R, Marchev A, Petkova N, Aneva I, Denev P, et al. Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int J Curr Microbiol App Sci. 2014;(2):296–306.
39.
Jassbi A, Zare S, Asadollahi M, Schuman M. Ecological roles and biological activities of specialized metabolites from the genus nicotiana. Chemical Reviews. 2017;(19):12227–80.
40.
Kishore K. Monograph of tobacco (Nicotiana tabacum). Indian Journal of Drugs. 2014;5–23.
41.
Knapp S, Chase M, Clarkson J. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon. 2004;(1):73–82.
42.
Kodama H, Fujimori T, Kato K. Glucosides of ionone-related compounds in several Nicotiana species. Phytochemistry. 1984;(3):80386–80386.
43.
Kostoff D. Cytogenetics of the genus nicotiana. karyosystematics, genetics, cytology, cytogenetics and phylogenesis of tobaccos. Cytogenetics of the genus Nicotiana. Karyosystematics, genetics, cytology. 1941;

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by