New functional foods and beverages can be developed using bioactive compounds present in pequi oil. Complex coacervation is an encapsulation method used for preserving bioactive molecules, especially those that are hydrophobic or sensitive to high temperatures. The objective of this work was to produce and characterize pequi oil microparticles using cashew gum/gelatin matrix (CG/GE) through complex coacervation. Gum Arabic (GA) was also studied in comparison with CG. The coacervation process was performed withoutpequi oil to determine the ideal proportions of the matrix components, followed by the embedding of the oil inthe microparticles for evaluation. Satisfactory microparticles were produced at pH 4.5 in the weight ratios of CG/GE = 2:1 and GA/GE = 1:3. Pequi oil release was greater in acidic pH, especially at pH 2 for the CG/GE matrix. The encapsulation efficiency for CG/GE and GA/GE was 72.53% (±4.80) and 82.77% (±6.09), respectively. The results showed that the CG/GE combination seemed very promising as anencapsulation matrix, especially for food applications involving pH values higher than 3.
Aguilera J. IV Iberoamerican Congress of Food Engineering (CIBIA IV). Journal of Food Engineering. 2005. p. 3–11.
2.
Alvim I, Ferreira Grosso C. Microparticles obtained by complex coacervation: Influence of the type of reticulation and the drying process on the release of the core material. Ciencia E Tecnologia De Alimentos. 2010. p. 1069–76.
3.
Andrade K, Carvalho C, Takeiti C. Goma de cajueiro (anacardium occidentale): Avaliação das modificações químicas e físicas por extrusão termoplástica. Polímeros. 2013. p. 667–71.
4.
Anvari M, Chung D. Dynamic rheological and structural characterization of fish gelatin-gum arabic coacervate gels crosslinked by tannic acid. Food Hydrocolloids. 2016. p. 516–24.
5.
Azeredo H. Encapsulação: Aplicação à tecnologia de alimentos. 2008.
6.
Azevedo-Meleiro C, Rodriguez-Amaya D. Confirmation of the identity of the carotenoids of tropical fruits by hplcdad and hplc-ms. Journal of Food Composition and Analysis. 2004. p. 385–96.
7.
Batista J, Silva A, Rodrigues C, Costa K, Oliveira A, Paiva E, et al. Avaliação da atividade cicatrizante do óleo de pequi (caryocar coriaceum wittm) em feridas cutâneas produzidas experimentalmente em ratos. Arquivos do Instituto Biológico. 2010. p. 441–7.
8.
IJFS January. 2020. p. I97–109.
9.
Black K, Priftis D, Perry S, Yip J, Byun W, Tirrell M. Protein encapsulation via polypeptide complex coacervation. ACS Macro Letters. 2014. p. 1088–91.
10.
Checci H. Fundamentos teóricos e práticos em análises de alimentos. Campinas. Editora da Unicamp; 2003.
11.
Comunian T, Gomez-Estaca J, Ferro-Furtado R, Andrade Conceicao G, Freitas Moraes I, De Castro I, et al. Effect of different polysaccharides and crosslinkers on echium oil microcapsules. Carbohydrate Polymers. 2016. p. 319–29.
12.
Da Silva L, Do Nascimento M, Mendes L, Furtado R, Correia Da Costa J, Herzog Cardoso A. Optimization of cashew gum and chitosan for microencapsulation of pequi oil by complex. Journal of Food Processing and Preservation. 2018.
13.
De Conto L, Grosso C, Gonçalves L. Chemometry as applied to the production of omega-3 microcapsules by complex coacervation with soy protein isolate and gum arabic. LWT-Food Science and Technology. 2013. p. 218–24.
14.
De Kruif C, Weinbreck F, De Vries R. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science. 2004. p. 340–9.
15.
De Oliveira E, Paula H, De Paula R. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids and Surfaces B-biointerfaces. 2014. p. 146–51.
16.
De Paula-Ju W, Rocha H, Donatti F, Fadel-Picheth L, Weffort-Santos C, A. Leishmanicidal, antibacterial, and antioxidant activities of caryocar brasiliense cambess leaves hydroethanolic extract. Revista Brasileira De Farmacognosia-brazilian Journal of Pharmacognosy-REV BRAS FAR-MACOGN. 2006. p. 16.
17.
De Souza V, Thomazini M, Echalar Barrientos M, Nalin C, Ferro-Furtado R, Genovese M, et al. Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides. Food Hydrocolloids. 2018. p. 297–306.
18.
Gomez-Estaca J, Comunian T, Montero P, Ferro-Furtado R, Favaro-Trindade C. Encapsulation of an astaxanthincontaining lipid extract from shrimp waste by complex coacervation using a novel gelatin-cashew gum complex. Food Hydrocolloids; 2016. p. 155–62.
19.
Gonçalves N, Grosso C, Rabelo R, Hubinger M, Prata A. Comparison of microparticles produced with combinations of gelatin, chitosan and gum arabic. Carbohydrate Polymers. 2018. p. 427–32.
20.
Gouin S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Science & Technology. 2004. p. 330–47.
21.
Habibi A, Keramat J, Hojjatoleslamy M, Tamjidi F. Preparation of fish oil microcapsules by complex coacervation of gelatin-gum arabic and their utilization for fortification of pomegranate juice. Journal of Food Process Engineering. 2017.
22.
Higuita D. Microencapsulação de oleoresina de cúrcuma (curcuma longa l.) em misturas de goma arábica, maltodextrina e amido modificado. UNESP; 2013.
23.
Hosseini S, Hosseini H, Mohammadifar M, Mortazavian A, Mohammadi A, Khosravi-Darani K, et al. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. International Journal of Biological Macromolecules. 2013. p. 582–8.
24.
Huang GQ, Sun YT, Xiao JX, Yang J. Complex coacervation of soybean protein isolate and chitosan. Food Chemistry. 2012. p. 534–9.
25.
Jafari SM, Mahdavi-Khazaei K, Hemmati-Kakhki A. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with arabic gum through freeze drying. Carbohydrate Polymers. 2016. p. 20–5.
26.
Jyothi N, Prasanna P, Sakarkar S, Prabha K, Ramaiah P, Srawan G. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation. 2010. p. 187–97.
27.
Khoshakhlagh K, Koocheki A, Mohebbi M, Allafchian A. Development and characterization of electrosprayed alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. Journal of Colloid and Interface Science. 2017. p. 562–75.
28.
Kim S, Huang J, Lee Y, Dutta S, Yoo H, Jung Y, et al. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proceedings of the National Academy of Sciences of the United States of America. 2016.
29.
Liu S, Low N, Nickerson T, M. Entrapment of flaxseed oil within gelatin-gum arabic capsules. Journal of the American Oil Chemists’ Society. 2010. p. 809–15.
30.
Lopes P, Pinto C, Baby A, Velasco M, Taqueda M, Kaneko T. Evaluation of in vitro percutaneous enhancement effect of papain and pequi oil on diclofenac sodium permeation through human skin. Revista Brasileira De Ciencias Farmaceuticas. 2008. p. 225–31.
31.
Lv Y, Yang F, Li X, Zhang X, Abbas S. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids. 2014. p. 305–14.
32.
Marfil P, Paulo B, Alvim I, Nicoletti V. Production and characterization of palm oil microcapsules obtained by complex coacervation in gelatin/gum arabic. Journal of Food Process Engineering. 2018.
33.
Pianovski A, Vilela A, Da Silva A, Lima C, Da Silva K, Carvalho V, et al. Uso do óleo de pequi (caryocar brasiliense) em emulsões cosméticas: Desenvolvimento e avaliação da estabilidade física. Revista Brasileira de Ciências Farmacêuticas. 2008. p. 249–59.
34.
Prata A, Grosso C. Production of microparticles with gelatin and chitosan. Carbohydrate Polymers. 2015. p. 292–9.
35.
Quirino G, Leite G, Rebelo L, Tome A, Martins Da Costa J, Cardoso A, et al. Healing potential of pequi (caryocar coriaceum wittm.) fruit pulp oil. Phytochemistry Letters. 2009. p. 179–83.
36.
Re M. Formulating drug delivery systems by spray drying. Drying Technology. 2006. p. 433–46.
37.
Revuelta M, Chacon Villalba M, Navarro A, Guida J, Castro G. Development of crystal violet encapsulation in pectin-arabic gum gel microspheres. Reactive & Functional Polymers. 2016. p. 8–16.
38.
Rodrigues R, Grosso C. Cashew gum microencapsulation protects the aroma of coffee extracts. Journal of Microencapsulation. 2008. p. 13–20.
39.
Rodrigues R. crocápsulas obtidas por spray-drying, contendo extrato de café crioconcentrado (Doctoral dissertation. 2004.
40.
Schmitt C, Turgeon S. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science. 2011. p. 63–70.
41.
Shaddel R, Hesari J, Azadmard-Damirchi S, Hamishehkar H, Fathi-Achachlouei B, Huang Q. Use of gelatin and gum arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules. 2018. p. 1800–10.
42.
Siow LF, Ong CS. Effect of ph on garlic oil encapsulation by complex coacervation. Journal of Food Processing & Technology. 2013.
43.
Tang CH, Li XR. Microencapsulation properties of soy protein isolate and storage stability of the correspondingly spray-dried emulsions. Food Research International. 2013. p. 419–28.
44.
Torquato D, Ferreira M, Sa G, Brito E, Pinto G, Azevedo E. Evaluation of antimicrobial activity of cashew tree gum. World Journal of Microbiology & Biotechnology. 2004. p. I97–109.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.