Current issue
Volume 13, Issue 2, 2024
Online ISSN: 2182-1054
Volume 13 , Issue 2, (2024)
Published: 18.10.2024.
Open Access
All issues
Contents
18.05.2021.
Original scientific paper
Effect of Retort Processing on Low Sodium Instant Noodle Seasoning Based on Oil-in-Water Emulsions
Increasing consumption of instant noodles with high sodium content could elevate the risk of cardiovascular disease. Making instant noodle seasoning in the form of an oil-in-water emulsion was expected to improve the perception of salty taste without increasing the use of salt. However, the oil concentration in the emulsion affects the perception. The addition of antioxidant and retort processing was needed to overcome the nature of the emulsion that was quite susceptible to oxidation and microbial contamination. Preliminary research determined the optimum concentration of oil and antioxidant based on physical characteristics, the perception/gustation of saltiness, and emulsion oxidative stability and the results were used for further research. The final part of the research determined the effects of retort processing on emulsion stability, the perception of saltiness, and the degree of microbial contamination. Three different oil concentrations (26, 27, and 28%) and three types of antioxidants (natural vitamin E, ascorbyl palmitate and mixed tocopherol) were applied to the instant noodle seasoning oil-in-water emulsions. The results showed that using 28% oil and mixed tocopherol had the most stability, was more viscous, and had optimum salty taste perception, which significantly extended the shelf-life of the emulsion compared with the others. Retort processing for 21.5 minutes in 123.5 °C was applied to the seasoning emulsion with 28% oil content and mixed tocopherol. Although, the microbial contamination was significantly reduced, neither the stability of emulsion nor the perception of salty taste was significantly changed by the process.
melanie cornelia, Angeline Apriliana, Irene Triyanti
18.10.2021.
Original scientific paper
Effects of addition of swine skin on the technological characteristics of mortadella produced in an industrial unit
The aim of this work was to evaluate the effects of the addition of swine skin on the technological characteristics of mortadella formulations produced on industrial scale. The effects of concentrations of swine skin (1.5 to 5.5 %) and sodium chloride (2 to 3 %) on total protein, total fat, starch, moisture, water activity, sodium, pH and texture profile (hardness, adhesiveness, elasticity, cohesiveness and chewiness) were evaluated and compared to a mortadella formulation without swine skin addition. The mortadella formulations with addition of 3.5 to 5.5 % swine skin and 2 to 2.5 % sodium chloride are in accordance with Brazilian legislation and provided an increase of approximately 12 % in protein content, a decrease of 14 % in sodium content and a water activity less than 0.9488. The swine skin and sodium chloride provided stability to the mortadella and influenced its texture, mainly in hardness, elasticity and chewiness.
Karem Muraro, Jamile Zeni, Rogério Luis Cansian, Juliana Steffens, Eunice Valduga, Geciane Toniazzo Backes
18.05.2021.
Original scientific paper
Thermal Degradation of β-Carotene from Macauba Palm: Mathematical Modeling and Parameter Estimation
Worldwide, there is a current need for new sources of vegetable oils. The natural content of total carotenoids in Acrocomia aculeata palm oil (up to 378 µg.g-1) surpasses that of many other tropical fruits, making it one of its main compositional characteristics. As far as can be verified, there is no available information on the degradation kinetics of carotenoids for A. aculeata oil, which is required to describe reaction rates and to predict changes that can occur during food processing. The present study considered prediction abilities that have emerged with the use of specific kinetic data and procedures to understand thermal processing better, as an essential unity operation. Two kinetic mechanisms were proposed to describe the overall thermal degradation of carotenoids in the oil; the first one consists of three reaction steps while the other presents only one-step reaction. Mass balance equations were numerically solved by a Backward Differentiation Formula technique. The kinetic parameters from both models were estimated through a hybrid optimisation method using the Particle Swarm Optimization and the Gauss-Newton method, followed by statistical analyses. The model with more than one reaction was shown to be overparameterized and was discarded. The model with a single reaction was highly suited to handle the experimental data available, and the dependency of its rate constant on temperature was expressed according to Arrhenius law. As far we know, this is the first time the kinetics of carotenoids thermal degradation in A. aculeata oil is investigated through modelling simulation.
Pedro Prates Valério, Amanda Lemette Brandão, Jesus Maria Frias Celayeta, Erika Cristina Cren
18.05.2021.
Original scientific paper
Industrial Practice for Reducing Defective Sterile Milk Products Produced Using Overpressure Rotary Retorts
Indonesian consumers are fond of commercially sterilized milk as indicated by increasing product sales. High demand for products intensifies the need to increase productivity, generally achieved by minimizing product defects. This study aimed to reduce the number of defects in commercially sterilized milk produced using overpressure rotary retorts. Based on Pareto analysis, the percentage of defective products was 5.14% of which 2.37% were dented bottles. A cause-effect diagram (Ishikawa Diagram) was used to find the root cause of dented bottles. The pressure difference between the retort chamber (external pressure) and inside the product packaging (internal pressure), and the number of bottles stacked inside the retort basket (bottle density) were found as major factors for causing dented bottles. The internal pressure was 1.20 bar higher than the external pressure. By reducing the pressure difference to 0.40 bar, the percentage of dented bottles could be reduced to 0.79%. Applying the low-est bottle density (73% of the retort basket area occupied by bottles) during the sterilization process could decrease the number of dented bottles, however, it also increased the appearance of striped lids. The best conditions for sterilization (pressure difference = 0.40 bar; number of bottles/basket = 1938 bottles) which were used in the three-month full-scale production trial reduced the percentage of defective products from 5.14% to 2.24% of which 0.76% were dented bottles. Setting the retort pressure at 2.80 bar could avoid 52,920 defective bottles of commercially sterilized products per month.
Muhamad Wahyu Pamuji, Eko Hari Purnomo, Azis Boing Sitanggang
18.05.2021.
Original scientific paper
Consumers’ Perception and Consumption of Sunflower Oil in Kumasi, Ghana
Consumption pattern among indigenous groups is usually influenced by consumers' sociocultural and perceptual factors. This study employs the binary logit model to analyse the factors that influence the consumption of sunflower oil in Kumasi, Ghana. A cross-sectional approach was used to obtain data from 200 consumers who were selected using a multi-stage sampling method. The results showed that a majority (93%) of the respondents were aware of the availability of sunflower oil on the local market and a third (69.5%) had used it for cooking before. The respondents agreed with the perception statements that sunflower oil is healthy, expensive, reduces the risk of heart diseases and cancer and has better frying performance. The empirical results of the logit regression model showed that consumption of sunflower oil is influenced by household size, awareness of the product and perceptions on health benefits, price and frying performance of sun ower oil. The price of the oil was identified as the most important constraint to its use albeit it had no negative effect on its consumption. Investments in the production and promotional strategies on the use of sunflower oil should consider the significant variables that have influence on its consumption.
Fred Nimoh, Richmond Anaman, Alhassan Abubakar, Bortey Manison Bishop, Daniel Opoku Darko
18.10.2021.
Original scientific paper
Tetracycline resistance in enterococci and Escherichia coli isolated from fresh produce and why it matters
The contamination of fresh produce with antibiotic-resistant bacteria is of particular concern as they are often eaten raw and can be a source for foodborne diseases. Tetracyclines have been largely used in humans, animals and plants which might have accelerated microbial resistance to them. Enterococci and Escherichia coli can be used as indicators to monitor contamination of the fresh produce with tetracycline-resistant bacteria. The investigation related to this issue is very scarce in Oman. This study aimed at identifying tetracycline-resistant enterococci and E. coli in fresh produce at the market place. Thirty-one enterococci and ten E. coli were isolated from local (Oman) and imported fruits and vegetables (N= 105). Using the standard Kirby-Bauer disc diffusion method, resistance to tetracycline was found in 6 (19 %) enterococci, isolated from cucumber, lettuce and radish, and 5 (50 %) E. coli, obtained from cabbage, lettuce and radish. Genetic analysis revealed the presence of tetracycline resistance genes, tet(A) and tet(K), in E. coli and tet(K), tet(L) and tet(M) in enterococci, including Enterococcus sulfureus, Enterococcus mundtii, Enterococcus casseli avus and Enterococcus faecalis. The integron integrase IntI 1 gene, which is known to facilitate the dissemination of antibiotic resistance genes among bacteria, was detected in 2 isolates of E. coli. These results demonstrated the capability of fresh produce to act as a potential source for disseminating tetracycline or possibly other antibiotic-resistant bacteria through the food chain. Thus, control strategies are needed to reduce exposure of the public to such microorganisms.
Zahra Al-Kharousi, Nejib Guizani, Abdullah M. Al-Sadi, Ismail M. Al-Bulushi
18.10.2021.
Original scientific paper
Effect of varying levels of acorn flour on antioxidant, staling and sensory properties of Iranian toast
Due to the high level of antioxidant activity of acorn fruits, they can be used as an ingredient the production of functional foods. The goal of the this research was to partially substitute wheat flour with varying levels (10% - 50% w/w) of debittered acorn flour and to investigate its effects on the rheological characteristics of the dough, total phenolic content (TPC), staling, colour indices and sensory properties of toast bread. The farinograph degree of softening and water absorption of the dough decreased with increasing the acorn flour content, while the stability and time of development of the dough increased. Resistance and extensibility to deformation of the samples respectively increased and decreased compared to those of the control. Toast bread with 30% acorn flour replacement was observed to have lower staling than the control. The highest TPC (9.44 mg GAE/g) and the lowest peroxide value (0.36 m eq O2/kg) were obtained for the bread having 30% acorn flour substitution. Moreover, the breads showed darker crumbs with significantly lower specific loaf volumes. Overall, the bread with 30% of acorn flour substitution showed good rheological, staling properties and reasonable anti-oxidant content compared to the control bread as well as the highest sensorial acceptability.
Babak Mousavi, sajad ghaderi, Mohammad Ali Hesarinejad, Azizollah Pourmahmoudi
18.10.2021.
Original scientific paper
Portfolio of beetroot (Beta vulgaris L.) peel extracts concentrated by nanofiltration membrane
Membrane process is an intelligent alternative way of concentration, preferably for organic juices rich in thermolabile natural components. The expectation is to scale up the extraction of desired compounds from agro-industrial wastes through modernized concentration method. Recovery of betalains, phenolic, and antioxidant from beetroot peel extracts was accomplished by nanofiltration membrane (NF 200) at a recirculation flow rate (400 L h-1) and feed temperature (30 ºC) under constant transmembrane pressure (40 bar). Characterization of betaxanthin, betacyanin, phenolic, and antioxidant activity by spectrophotometric analysis revealed that the final samples contain these compounds respectively: 202.25±3.26 mg.L-1, 360.07±8.43 mg.L-1, 987.79±19.18 mg.L-1, 642.06±14.78 mg.L-1 (pure water); 206.62±1.37 mg.L-1, 339.72±2.89 mg.L-1, 972.72±47.49 mg.L-1, 745.97±25.45 mg.L-1 (ethanol-water). Final samples exhibit vivid colour and a considerably large amount of desired compounds compared to crude extracts and could have industrial applications.
Zin Moh Moh, Szilvia Bánvölgyi
18.10.2021.
Original scientific paper
Response surface analysis and process optimization of non-cereal (elephant foot yam, taro and water chestnut) snacks
The present study was conducted to develop non-cereal starch extruded products. The effects of feed moisture (15-21%), temperature (130-170 °C) and screw speed (120-160 rpm) were evaluated on the physical and functional properties of extruded snacks using response surface methodology. Feed moisture and screw speed increased the bulk density and hardness of extruded snacks. Significant decreases in water absorption index and increases in water solubility index were observed with increases in extrusion temperature. The best conditions were determined by numerical optimization. The optimized value for non-cereal snacks for feed moisture is 18.22%, temperature 155.96 °C, screw speed 142.75 rpm and, desirability is 0.75. Verification of results showed decent agreement between the responses of experimental values at certain optimum conditions and the predicted values.
Anuj Saklani, Ravinder Kaushik, Krishan Kumar
18.05.2021.
Original scientific paper
Applications of High Pressure Technology in Food Processing
Consumer trends towards shelf-stable, safe, more natural and free from additives foods drove the need to investigate the commercial application of non-thermal food processing technologies. High pressure processing (HPP) is one such emerging technology where foods are generally subjected to high pressure (100-1000 MPa), with or without heat. Similar to heat pasteurization, HPP deactivates pathogenic microorganisms and enzymes, extends shelf life, denatures proteins, and modifies structure and texture of foods. However, unlike thermal processing, HPP can retain the quality of fresh food products, with little or no impact on nutritional value and organoleptic properties. Moreover, HPP is independent of the geometry (shape and size) of food products. The retention of food quality attributes, whilst prolonging shelf life, are enormous benefits to both food manufacturers and consumers. Researches have indicated that the combination of HPP and other treatments, based on the hurdle technology concept, has potential synergistic effects. With further advancement of the technology and its large-scale commercialization, the cost and limitations of this technology will probably reduce in the near future. The current review focuses on the mechanism and system of HPP and its applications in the processing of fruit, vegetables, meat, milk, fish and seafood, and eggs and their derived products.
K. R. Jolvis Pou