Effects of Pretreatments in Convective Dehydration of Rosehip (Rosa eglanteria)

Alejandra Mabellini ,
Alejandra Mabellini

Facultad de Ciencia y Tecnolog´ıa de los Alimentos, National University of Comahue, Neuquén, Argentina

CONICET-CCT Comahue Quintral 1250 (8400), San Carlos de Bariloche, , Rıo Negro, Argentina

Elizabeth Ohaco ,
Elizabeth Ohaco

Facultad de Ciencia y Tecnologia de los Alimentos, National University of Comahue, Neuquén, Argentina

Carlos Alberto Márquez ,
Carlos Alberto Márquez

Facultad de Ciencia y Tecnologıa de los Alimentos, National University of Comahue, Neuquén, Argentina

Antonio De Michelis ,
Antonio De Michelis
Contact Antonio De Michelis

INTA AER El Bolson, Marmol 1950 (8430) El Bolson, , Rıo Negro, Argentina

CONICET-CCT Comahue Quintral 1250 (8400), San Carlos de Bariloche, Argentina

Jorge Enrique Lozano
Jorge Enrique Lozano

CONICET-CCT Comahue Quintral 1250 (8400), San Carlos de Bariloche, Argentina

PLAPIQUI (Planta Piloto de Ingenierıa Qumica), Camino “La Carrindanga”, Argentina

Published: 18.04.2012.

Volume 1, Issue 1 (2012)

pp. 42-51;

https://doi.org/10.7455/ijfs.v1i1.39

Abstract

The aim of this work was to experimentally determine drying curves for thin layer and bed drying of rosehip fruits, with and without pretreatments, to reduce processing times as a function of drying air operating variables, to propose dehydration kinetics of fruits and to determine its kinetic parameters for further use within drying simulation software. Fruits were pre-treated both chemically and mechanically, which included dipping the fruits in NaOH and ethyl oleate solutions; and cutting or perforating the fruit cuticle, respectively. Simulation models were then adopted to fit the kinetics drying data considering fruit volume shrinkage. These simple models minimized the calculation time during the simulation of deep-bed driers. Results show that pre-treatments reduced processing times up to 57%, and evaluated models satisfactorily predicted the drying of rosehip fruit. Effective mass diffusion coefficients were up to 4-fold greater when fruit was submitted to mechanical pretreatments.

Keywords

References

1.
Azoubel P, Murr F. Transport phenomena in food processing. In: *Effect of pre-treatment on the drying kinetics of cherry tomato (Lycopersicon esculentum var cerasiforme)*. p. 137–51.
2.
Barta J. Handbook of fruit and fruit processing. In: *Fruit Drying Principles*.
3.
Becker H. A study of diffusion in solids of arbitrary shape, with application to the drying of the wheat kernel. Vol. 1, *Journal of Applied Polymer Science*. p. 212–26.
4.
Bird R, Stewart W, Lightfoot E. *Transport phenomena*.
5.
Caro J, Kesseler A, Michelis A. El ácido ascórbico como componente guía en el proceso de secado de frutos de la rosa eglanteria. Vol. 2, *Actas del XII Congreso CYTAL AATA*. p. 4.
6.
Crank J. *The mathematics of diffusion*.
7.
Di Matteo M, Cinquanta L, Galiero G, Crescitelli S. Effect of a novel physical pretreatment process on the drying kinetics of seedless grapes. Vol. 46, Journal of Food Engineering. 2000. p. 83–9.
8.
Doymaz İ. Influence of pretreatment solution on the drying of sour cherry. Vol. 78, Journal of Food Engineering. 2007. p. 591–6.
9.
Doymaz İ, İsmail O. Drying characteristics of sweet cherry. Vol. 89, Food and Bioproducts Processing. 2011. p. 31–8.
10.
Erenturk S, Gulaboglu MS, Gultekin S. The effects of cutting and drying medium on the vitamin C content of rosehip during drying. Vol. 68, Journal of Food Engineering. 2005. p. 513–8.
11.
Gambella F, Piga A, Agabbio M, Vacca V, D’hallewin G. Effect of different pre-treatments on drying of green table olives (Ascolana Tenera var. Vol. 51, *Grasas y Aceites*. p. 173–6.
12.
Giner SA, Mascheroni RH. PH—Postharvest Technology. Vol. 80, Journal of Agricultural Engineering Research. 2001. p. 351–64.
13.
Giner S. *Diseño de secadoras continuas de trigo: simulación de la transferencia de calor y materia y de pérdidas de calidad*.
14.
Grabowski S, Marcotte M. Transport phenomena in food processing. In: *Pretreatment efficiency in osmotic dehydration of cranberries*. p. 83–94.
15.
Himmelblau D, Bischoff K. *Process analysis and simulation*.
16.
Jazini MH, Hatamipour MS. A new physical pretreatment of plum for drying. Vol. 88, Food and Bioproducts Processing. 2010. p. 133–7.
17.
MABELLINI A, VULLIOUD MB, MÁRQUEZ CA, MICHELIS AD. KINETIC DRYING EXPERIMENTAL DATA AND MATHEMATICAL MODEL FOR SWEET CHERRIES (PRUNUS AVIUM). Vol. 33, Journal of Food Process Engineering. 2010. p. 1115–28.
18.
Mabellini A, Ohaco E, Vullioud M, Pirone B, Ochoa M, Kesseler A, et al. Rosas silvestres en la República Argentina y su uso en productos alimentarios. In: Agencia de Extensión Rural El Bolsón Ediciones INTA EEA Bariloche - AER El Bolsón Serie: Comunicaciones Técnicas N 41.
19.
Márquez CA, De Michelis A. Comparison of Drying Kinetics for Small Fruits with and without Particle Shrinkage Considerations. Vol. 4, Food and Bioprocess Technology. 2011. p. 1212–8.
20.
Márquez C. *Deshidratación de rosa mosqueta (rosehip)*.
21.
Márquez CA, De Michelis A, Giner SA. Drying kinetics of rose hip fruits ( Rosa eglanteria  L.). Vol. 77, Journal of Food Engineering. 2006. p. 566–74.
22.
Ochoa MR, Kesseler AG, Pirone BN, Márquez CA, De Michelis A. Analysis of shrinkage phenomenon of whole sweet cherry fruits (Prunus avium) during convective dehydration with very simple models. Vol. 79, Journal of Food Engineering. 2007. p. 657–61.
23.
Ochoa MR, Kesseler AG, Pirone BN, Márquez CA, De Michelis A. Shrinkage During Convective Drying of Whole Rose Hip (Rosa Rubiginosa L.) Fruits. Vol. 35, LWT - Food Science and Technology. 2002. p. 400–6.
24.
Ohaco E, Pirone B, Ochoa M, Kesseler AG, Michelis A. Air dehydration of rosehip fruits: concentration of ascorbic acid evolution during the process. In: *Proceedings of the 3rd Mercosur Congress on Process System Engineering, ENPROMER 2001*. p. 1453–8.
25.
Ohaco E, Pirone BN, Ochoa MR, Kesseler AG, Márquez CA, Michelis A. Color retention and drying kinetics during convective dehydration of rose hip fruits (Rosa eglanteria. In: *Actas del ENPROMER 2005*.
26.
Parry JL. Mathematical modelling and computer simulation of heat and mass transfer in agricultural grain drying: A review. Vol. 32, Journal of Agricultural Engineering Research. 1985. p. 1–29.
27.
Petrucci V, Canata N, Bolin H, Fuller G, Stafford A. Use of oleic acid derivatives to accelerate drying of Thompson seedless grapes. In: *Paper presented at the Symposium on Novel Uses of Agricultural Oils at the AOCS Spring Meeting*.
28.
Pirone B, Ochoa M, Kesseler A, Michelis A. Chemical characterization and evolution of ascorbic acid concentration during dehydration of rosehip (Rosa eglanteria) fruits. Vol. 2, *American Journal of Food Technology*. p. 377–87.
29.
Pirone B, Ochoa M, Kesseler A, Michelis A. Evolución.
30.
de la concentración de ácido ascórbico durante el proceso de deshidratación de frutos de la rosa mosqueta (Rosa eglanteria L. Vol. 31, *Revista de Investigaciones Agropecuarias del INTA*. p. 85–98.
31.
Ratti C. *Diseño de secaderos de productos frutihortícolas*. In: Departamento de Química e Ingeniería Química, Planta Piloto de Ingeniería Química.
32.
Tarhan S. Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying air temperatures. Vol. 79, Journal of Food Engineering. 2007. p. 255–60.
33.
Thakor NJ, Sokhansanj S, Sosulski FW, Yannacopoulos S. Mass and dimensional changes of single canola kernels during drying. Vol. 40, Journal of Food Engineering. 1999. p. 153–60.
34.
Vullioud M, Márquez CA, De Michelis A. Equilibrium Sorption Isotherms and Isosteric Heat of Rose Hip Fruits (Rosa Eglanteria). Vol. 9, International Journal of Food Properties. 2006. p. 823–33.
35.
Zogzas NP, Maroulis ZB, Marinos-Kouris D. Moisture Diffusivity Data Compilation in Foodstuffs. Vol. 14, Drying Technology. 1996. p. 2225–53.

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by