Effect of structural modifications on the drying kinetics of foods: changes in volume, surface area and product shape

Antonio De Michelis ,
Antonio De Michelis
Contact Antonio De Michelis

INTA AER El Bolson, Argentina

Facultad de Ciencias y Tecnolog´ıa de los Alimentos, National University of Comahue, Neuquén, Argentina

Carlos A. Márquez ,
Carlos A. Márquez

Facultad de Ciencias y Tecnolog´ıa de los Alimentos, National University of Comahue, Neuquén, Argentina

Alejandra Mabellini ,
Alejandra Mabellini

Facultad de Ciencias y Tecnolog´ıa de los Alimento, National University of Comahue, Neuquén, Argentina

C.O.N.I.C.E.T., Argentina

Elizabeth Ohaco ,
Elizabeth Ohaco

Facultad de Ciencias y Tecnologıa de los Alimentos, National University of Comahue, Neuquén, Argentina

Sergio A. Giner
Sergio A. Giner

CIDCA, Departamento de Ingenierıa Quımica, Facultad de Ingenierıa, National University of La Plata, La Plata, Argentina

Published: 18.10.2013.

Volume 2, Issue 2 (2013)

pp. 188-211;

https://doi.org/10.7455/ijfs/2.2.2013.a6

Abstract

Macro and micro-structural changes take place during food dehydration. Macro-structural changes encompass modifications in shape, area and volume. Studies of such changes are important because dehydration kinetics (essential for calculating industrial dryers) may be highly influenced by changes in food shape and dimensions. The overall changes in volume, surface area (“shrinkage”) and shape (Heywood factor, with provides a close description of food shape) were determined experimentally, and the results were correlated with simple expressions. Hence, although dehydration kinetics can be modeled with simplified overall shrinkage expressions, the possibility of selecting a suitable geometry and predicting the characteristics dimensions will provide higher accuracy. An additional unresolved problem is the lack of a general model that predicts macro-structural changes for various foods and diverse geometries. In this work, based on experimental data of sweet and sour cherries, and rose hip fruits, a simplified general model to predict changes in volume and surface area are proposed. To estimate how the changes in characteristic dimensions affect the kinetic studies, experimental drying curves for the three fruits by means of a diffusional model considered the following variants for the characteristic dimensions: (i) The radius of the fresh food, assumed constant; (ii) The radius of the partially dehydrated product; (iii) The radius predicted by the correlation for structural changes, especially volume, obtained in this work and generalized for the three fruits, and (iv) to demonstrate the need to study the macro-structural changes for all dehydrated foods, also be present the case of a restructured food.

Keywords

References

1.
Aoac. Official methods of analysis. 1984;(14).
2.
Arnosti S, Freire J, Sartori D. Analysis of shrinkage phenomenon in brachiaria brizantha seeds. Drying Technology. 2000;(6):1339–48.
3.
Barbosa-Cánovas G, Juliano P, Peleg M. Encyclopedia of Life Support Systems (EOLSS). 2004;1–32.
4.
Becker H. A study of diffusion in solids of arbitrary shape, with application to the drying of the wheat kernel. Journal of Applied Polymer Science. 1959;(2):212–26.
5.
Bhandari B, Howes T. Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering. 1999;(1–2):71–9.
6.
Pacco C, Menegalli H, F. Drying 2004 -Proceedings of the 14 th International Drying Symposium (IDS 2004). 2004;1851–8.
7.
Chaves M, Sgroppo S, Avanza J. Comunicaciones Cientficas y Tecnológicas 2003: 1-4. Resumen: E-060. 2003;
8.
Clemente G, Bon J, Cárcel J, Garcia-Pascual P, Mulet A. VIII International Congress on Engineering and Food. 2000;(6):9–13.
9.
Costa C, Antonucci F, Pallottino F, Aguzzi J, Sun DW, Menesatti P. Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision. Food and Bioprocess Technology. 2011;(5):673–92.
10.
Devahastin S, Niamnuy C. Modelling quality changes of fruits and vegetables during drying: a review. International Journal of Food Science and Technology. 2010;(9):1755–67.
11.
El-Aouar A, Moreira Azoubel P, Kurozawa L, Simões M, Colato Antonio G, Xidieh Murr F. Study of Shrinkage Phenomenon During Convective Drying of Papaya (Carica papaya L.). (2 nd Mercosur Congress on Chemical Engineering. 2005;1–10.
12.
Falade K, Abbo E. Airdrying and rehydration characteristics of date palm (phoenix dactylifera l.) fruits. Journal of Food Engineering. 2007;(2):724–30.
13.
Gaston A, Abalone R, Giner S, Bruce D. EN-PROMER 2001 Conference. Latin American Applied Research. 2003;(3):327–31.
14.
Gumeta-Chavez C, Chanona-Perez J, J, Mendoza-Perez A, Terres-Rojas J, Garibay-Febles E, et al. Shrinkage and deformation of agave atrovirens karw tissue during convective drying: influence of structural arrangements. Drying Technology. 2011;(6):612–23.
15.
Hatamipour M, Mowla D. Correlations for shrinkage, density and diffusivity for drying of maize and green peas in a luidized bed with energy carrier. Journal of Food Engineering. 2003;(2–3):221–7.
16.
Hatamipour M, Mowla D. Shrinkage of carrots during drying in an inert medium fluidized bed. Journal of Food Engineer-ing. 2002;(3):247–52.
17.
Jinorose M, Devahastin S. The proceedings of the 5th asia-pacific drying conference. :158–65.
18.
Kechaou N, Roques M, Lambert J. Diffusion in shrinking media: The case of drying of gels. 1987;55–60.
19.
Kilpatrick P, Lowe E, Van Arsdel W. Tunnel dehydration for fruit and vegetables. Advances in Food Research. 1975;313–72.
20.
Diaz L, Giannuzzi E, Giner L, S. Apple pectic gel produced by dehydration. Food and Bioprocess Technology. 2009;(2):194–207.
21.
Lozano J, Rotstein E, Urbicain M. Shrinkage, porosity and bulk-density of foodstuffs at changing moisture contents. Journal of Food Science. 1983;(5):1497.
22.
Lozano J, Rotstein E, Urbicain M. Total porosity and open-pore porosity in the drying of fruits. Journal of Food Science. 1980;(5):1403–7.
23.
Mabellini A, Ohaco E, Márquez C, De Michelis A, Lozano J. Effects of pretreatments in convective drying of rosehip (Rosa eglanteria). International Journal of Food Studies. 2012;(1):42–51.
24.
Mabellini A, Beatriz Vullioud M, Marquez A, De Michelis C, A. Kinetic drying experimental data and mathematical model for sweet cherries (Prunus Avium). Journal of Food Process Engineering. 2010;(6):1115–28.
25.
Marquez C, De Michelis A. Comparison of drying kinetics for small fruits with and without particle shrinkage consid-erations. Food and Bioprocess Technology. 2011;(7):1212–8.
26.
Marquez C, De Michelis A, Giner S. 16th International Congress of Chemical and Process Engineering (CHISA). 2006;(3):566–74.
27.
Mayor L, Sereno A. Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering. 2004;(3):373–86.
28.
Moreira R, Figueiredo A, Sereno A. Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technology. 2000;(1–2):279–94.
29.
Ochoa M, Kesseler A, Pirone B, Marquez C, De Michelis A. Analysis of shrinkage phenomenon of whole sweet cherry fruits (Prunus avium) during convective dehydration with very simple models. Journal of Food Engineering. 2007;(2):657–61.
30.
Ochoa M, Kesseler A, Pirone B, Marquez C, De Michelis A. Shrinkage during convective drying of whole rose hip. 2002;(5):400–6.
31.
Ochoa M, Kesseler A, Pirone B, Marquez C, De Michelis A. Volume and area shrinkage of whole sour cherry fruits (Prunus cerasus) during dehydration. Drying Technology. 2002;(1):147–56.
32.
Ohaco E, Mabellini A, Márquez C, De Michelis A, Lozano J. Tiempos de secado durante la deshidratación convectiva de rosa mosqueta pretratada química y mecánicamente. Actas III Congreso Internacional de Ciencia y Tecnología de Alimentos. Libro. 2009;978–87.
33.
Panyawong S, Devahastin S. Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. Journal of Food Engineering. 2007;(1):151–61.
34.
Pezzutti A. Deshidratación de ajo y cebolla. 1994;
35.
Pirone B, Vullioud M, Ochoa M, Kesseler A, Márquez C, De Michelis A. Alimentos -Campinas. 2008;(2):317–21.
36.
Raghavan G, Venkatachalapathy K. Shrinkage of strawberries during microwave drying. Drying Technology. 1999;(10):2309–21.
37.
Ramos I, Brandao T, Silva C. International Iberdesh 2002 Conference, Valencia. Food Science and Technology International. 2003;(3):201–6.
38.
Ratti C. Diseño de secaderos de productos frutihorticolas.Tesis Doctoral. Universidad Nacional del Sur. 1991;
39.
Ratti C. Shrinkage during drying of foodstuffs. Journal of Food Engineering. 1994;(1):91–105.
40.
Roos Y. Phase transitions in foods. 1995;
41.
Schultz E, Mazzuco M, Machado R, Bolzan A, Quadri M, Quadri M. Effect of pre-treatments on drying, density and shrinkage of apple slices. Journal of Food Engineering. 2007;(3):1103–10.
42.
Suzuki K, Kubota K, Hasegawa T, Hosaka H. Shrinkage in dehydration of root vegetables. Journal of Food Science. 1976;(5):1189–93.
43.
Vanacore T, Chaves S, M, J, A. Comunicaciones Científicas y Tecnológicas 2006: 1-4. Resumen: E-032. 2006;
44.
Vullioud M, Marquez C, De Michelis A. Desorption isotherms for sweet and sour cherry. Journal of Food Engineering. 2004;(1):15–9.
45.
Vullioud M, Marquez C, De Michelis A. Equilibrium sorption isotherms and isosteric heat of rose hip fruits (rosa eglanteria). International Journal of Food Properties. 2006;(4):823–33.
46.
Ochoa MR, Kesseler AG, Pirone BN, Márquez CA, De Michelis A. Shrinkage During Convective Drying of Whole Rose Hip (Rosa Rubiginosa L.) Fruits. LWT - Food Science and Technology. 2002;35(5):400–6.

Citation

Copyright

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Indexed by