Current issue

Issue image

Volume 13, Issue 2, 2024

Online ISSN: 2182-1054

Volume 13 , Issue 2, (2024)

Published: 18.10.2024.

Open Access

All issues

More Filters

Contents

18.04.2019.

Original scientific paper

Moisture sorption isotherm and thermodynamic properties of jamun (Syzygium cumini L.) powder made from jamun pulp and seed

The present work aimed to: i) find the suitable proportion, based on sensory evaluation, of microwave-convective hot air dried jamun (Syzygium cumini L.) pulp and seed kernel powder to be mixed for the preparation of jamun powder (JP); ii) generate and model the moisture sorption isotherm (MSI) of JP; and iii) estimate net isosteric heat of sorption (qst), spreading pressure (Φ), net integral enthalpy (Qin), and net integral entropy (Sin). To formulate JP, the proportion (w/w, db) comprising 2% kernel and 98% pulp powder was the most desirable. The Peleg model was the best fit to MSI of JP. The qst decreased following linear relationship from 11.02 kJ. mol−1 at 5% equilibrium moisture content (EMC) to 0.27 kJ. mol−1 at 30% EMC. The Φ increased with increase in water activity and decreased with increase in temperature from 25 oC to 35 oC, and the values of Φ at 45 oC were even higher than at 25 oC. Net integral enthalpy (Qin) initially decreased till 6% moisture content in JP and displayed an increasing trend with further increase in moisture content. On the contrary, Sin kept on decreasing continually with increasing moisture content. The moisture zone of 7-11% was considered safe for storage of JP within the temperature range of 45-25 oC.

Indira Dey Paul, Madhusweta Das

18.04.2016.

Original scientific paper

Effects of knife edge angle and speed on peak force and specific energy when cutting vegetables of diverse texture

Cutting tool parameters such as edge-sharpness and speed of cut directly influence the shape of final samples and the required cutting force and specific energy for slicing or cutting operations. Cutting force and specific energy studies on different vegetables help to design the appropriate slicing or cutting devices. Peak cutting force and specific energy requirements for the transverse cutting of nine vegetables, differing in their textural characteristics of rind and flesh, were determined at cutting speeds of 20, 30, 40 mm min−1 and single-cut knife-edge angles of 15, 20 and 25° using a Universal Testing Machine. Low speed (20 mm min−1 ) cutting with a sharper knife-edge angle (15°) required less peak force and specific energy than that of high-speed cutting (40 mm min−1 ) with a wider knife-edge angle (25°). The vegetables with the maximum and minimum variation in the average peak cutting force were aubergine, at 79.05 (for knife speed 20 mm min−1 and edge angle 15°) to 285.1 N (40 mm min−1 and 25°), and cucumber, at 11.61 (20 mm min−1 and 15°) to 21.41 N (40 mm min−1 and 25°), respectively. High speed (40 mm min−1 ), with a large knife-edge angle (25°), required the highest force and specific energy to cut the vegetables, however, low speed (20 mm min−1 ), with a small knife-edge angle (15°), is preferred. Effects of cutting speed and knife-edge angle on peak force and specific energy responses were found significant (p<0.05). Linear or quadratic regressions gave a good fit of these variables.

VISHAL SINGH, Madhusweta Das, Susanta Kumar Das

18.04.2015.

Original scientific paper

Sensory evaluation of aromatic foods packed in developed starch based films using fuzzy logic

The last two decades have seen attempts to replace non biodegradable, synthetic food packaging films with alternatives made from biopolymers. The objective of the present work was to evaluate sensory quality of tea leaf and culinary tastemaker powder when sealed in pouches based on starch films. Films were developed from corn starch and a functional polysaccharide (FP) from amylose (AM), methylcellulose (MC), and hydroxypropylmethylcellulose (HPMC), using a casting technique. Pouches were stored inside a secondary package (plastic jar) under ambient condition for 90 days. Sensory attributes of the stored food samples were evaluated (tea in liquor form) and the scores analysed by fuzzy logic. Results were compared with similarly stored foods but using market available poly-pouches as packaging material.
For tea and tastemaker in general, the relative importance of the sensory attributes under consideration was assessed as: aroma (Highly important) > taste (Highly important) > colour (Highly important) > strength (Important) for tea, and taste (Highly important) > aroma (Highly important) > colour (Important) > appearance (Important) for tastemaker. Among the three films that were developed, the highly important sensory attributes of aroma and taste were maintained as ‘Very good’ when the foods were packed in starch–HPMC/AM film. When the products were packed in market-available polypouches they exhibited similar attributes. With the exception of ‘Very good’ maintenance of the colour of tastemaker by the commercial pouch, irrespective of film and food, the colour and strength/appearance were retained in the ‘Good’-‘Satisfactory’ range. The overall sensory score of tea was also maintained as ‘Very good’ in starch-HPMC film. 

Tanima Chowdhury, Madhusweta Das

Indexed by