Current issue

Issue image

Volume 13, Issue 2, 2024

Online ISSN: 2182-1054

Volume 13 , Issue 2, (2024)

Published: 18.10.2024.

Open Access

All issues

More Filters

Contents

01.12.2015.

Professional paper

Modeling the kinetics of peroxidase inactivation, colour and texture changes of Portuguese cabbage (Brassica oleracea L. var. costata DC) during UV-C light and heat blanching

The effects of heat blanching and UV-C light followed by heat on Portuguese cabbage peroxidase (POD), colour and texture were studied in the temperature range of 80-95 °C. POD inactivation, lightness (L) and yellowness (b) colour changes were described by a first-order reaction model. The greenness (a) colour and texture (firmness) changes followed a two fraction kinetic model behaviour. The temperature effect was well described by the Arrhenius law.At lower temperatures the combined treatment showed higher POD inactivation. Colour and texture parameters did not show significant differences between treatments. Long processing times turned the leaves slightly darker, decreased greenness, yellowness and firmness. Short processing times increased the  firmness and greenness of the leaves. The treatment at 80 °C for 90 seconds reduced 90% of POD, retaining 98% of lightness and 92% of yellowness and improved the green colour (130%) and firmness (125%). At 80 °C the heat blanching required 7.4 min to inactivate 90% of the enzyme activity, reducing lightness, greenness, yellowness and firmness to 92%, 68%, 62% and 61%, respectively. The present findings will help to optimize the Portuguese cabbage blanching conditions.

Rui M.S. Cruz, Ana I.A. Godinho, Dilek Aslan, Necip F. Koçak, Margarida C. Vieira

18.04.2013.

Original scientific paper

Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices

There is growing interest in the use of natural agents with antimicrobial (AM) and antioxidant (AOX) properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE) and chitosan, against gram-negative (Pseudomonas aeruginosa), gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis) and yeast (Saccharomyces cerevisiae) at 106 cfu mL-1 was studied. To observe the synergistic or antagonistic effect and find optimal combinations between the three agents, a simplex centroid mixture design was run for each microorganism, combining carvacrol (0-300 ppm, X1), GSE (0-2000 ppm, X2) and chitosan (0-2% w/v, X3). Results of the response surface analysis showed several synergistic effects for all microorganisms. Combinations of 60 ppm-400 ppm-1.2% w/v (carvacrol-GSE-chitosan; optimal AM combination 1, OAMC-1); 9.6 ppm-684 ppm-1.25% w/v (OAMC-2); 90 ppm-160 ppm-1.24% w/v (OAMC-3) were found to be the optimal mixtures for all microorganisms. Radical scavenging activity (RSA) of the same agents was then compared with a standard AOX (butylated hydroxytoluene; BHT) at different concentrations (25, 50 and 100 ppm; as well as the optimal AM concentrations) by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. RSA increased in the following order: chitosan< carvacrol< BHT< GSE and for the OAMC: OAMC-2< OAMC-1< OAMC-3. The best RSA (OAMC-3) was applied as a coating in two different food matrices (strawberries and salmon). For strawberries, P. aeruginosa was more sensitive to the action of OAMC-3 than S. cerevisiae. For salmon, S. aureus was more resistant to the action of OAMC-3 than E. faecalis and L. innocua.

Javiera F. Rubilar, Rui M.S. Cruz, Igor Khmelinskii, Margarida Vieira

01.12.2012.

Professional paper

Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices

There is growing interest in the use of natural agents with antimicrobial (AM) and antioxidant (AOX) properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE) and chitosan, against gram-negative (Pseudomonas aeruginosa), gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis) and yeast (Saccharomyces cerevisiae) at 106 cfu mL-1 was studied. To observe the synergistic or antagonistic effect and find optimal combinations between the three agents, a simplex centroid mixture design was run for each microorganism, combining carvacrol (0-300 ppm, X1), GSE (0-2000 ppm, X2) and chitosan (0-2% w/v, X3). Results of the response surface analysis showed several synergistic effects for all microorganisms. Combinations of 60 ppm-400 ppm-1.2% w/v (carvacrol-GSE-chitosan; optimal AM combination 1, OAMC-1); 9.6 ppm-684 ppm-1.25% w/v (OAMC-2); 90 ppm-160 ppm-1.24% w/v (OAMC-3) were found to be the optimal mixtures for all microorganisms. Radical scavenging activity (RSA) of the same agents was then compared with a standard AOX (butylated hydroxytoluene; BHT) at different concentrations (25, 50 and 100 ppm; as well as the optimal AM concentrations) by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. RSA increased in the following order: chitosan< carvacrol< BHT< GSE and for the OAMC: OAMC-2< OAMC-1< OAMC-3. The best RSA (OAMC-3) was applied as a coating in two different food matrices (strawberries and salmon). For strawberries, P. aeruginosa was more sensitive to the action of OAMC-3 than S. cerevisiae. For salmon, S. aureus was more resistant to the action of OAMC-3 than E. faecalis and L. innocua.

Javiera F. Rubilar, Rui M.S. Cruz, Igor Khmelinskii, Margarida Cortez Vieira

Indexed by