Current issue

Volume 13, Issue 2, 2024
Online ISSN: 2182-1054
Volume 13 , Issue 2, (2024)
Published: 18.10.2024.
Open Access
All issues
Contents
18.04.2015.
Original scientific paper
Almond milk fermented with different potentially probiotic bacteria improves iron uptake by intestinal epithelial (Caco-2) cells
New fermented almond milks were developed, using different potentially probiotic bacteria, in order to meet the current demand for healthy, versatile non-dairy products. An in vitro digestion/Caco2 cell model was used to evaluate the effect of both non-fermented and fermented almond milks on the mitochondrial enzymatic activities of enterocytes. Moreover, macrophages were challenged with the in-vitro digested samples and the production of pro-inflammatory biomarkers TNF-α and IL-6 was quantified. Enzymatic activities of cell cultures seemed to be stimulated by the exposure to both fermented and non-fermented almond milks. Both biomarkers decreased (p< 0.05) in fermented almond milks with either B. bifidum or B. longum. Results showed that fermented almond products favored the energetic metabolism of enterocytes and had a lower inflammatory response than non-fermented almond milk, suggesting its benefits for the management of allergies/intolerances. Moreover, the fermentation process enhanced the uptake of iron by Caco-2 cells, especially when using L. rhamnosus and either B. bifidum or B. longum as starters, thus improving the product bioactivity. Therefore, new nondairy fermented products with functional properties were developed, which might be positioned as alternatives to cow-milk products for sensitized groups of population (allergic and/or intolerant to cow milk or anemic population, among others).
Neus Bernat, Maite Chafer, Amparo Chiralt, Jose Moises Laparra, Chelo Gonzalez-Martıne
18.10.2015.
Original scientific paper
Probiotic fermented almond “milk” as an alternative to cow-milk yoghurt
Probiotics in almond-based matrices were considered as a means of obtaining fermented products which would cover both the current demand for health-promoting foods and for alternatives to standard yoghurts. Firstly, the combined effect of high pressure homogenisation (HPH) and heat treatment on the physical stability of almond “milk” was studied. The beverage was homogenised by applying 62, 103 and 172 MPa (MF1, MF2 and MF3 respectively); MF3 was also combined with two different heat treatments (85 °C-30 min (LH) and 121 °C-15 min (HH)). Both microstructure and colloidal stability were analysed in all the processed samples to select the most suitable treatment with which to obtain a stable product. The selected almond milk was then fermented with probiotic Lactobacillus reuteri and Streptococcus thermophilus and the final product was characterised throughout cold storage time (28 days) as to pH, acidity, serum retention and starter viability. A sensory evaluation and probiotic survival to in vitro digestion was also conducted. The results showed that the physical and structural almond-milk properties were affected by both HPH and heat treatments, obtaining the greatest stability in MF3-LH samples. The fermented milk permitted probiotic survivals above the level suggested as minimum for ensuring health benefits during the entire controlled time and, hence, can be considered as a functional food. No differences in the sensory acceptability of the product were found between 1 and 28 storage days. Therefore, a new, functional, fermented product was developed, which was suitable for targeted groups, such as the lactose-intolerant and cow-milk-protein allergic populations.
Neus Bernat, Maite Chafera, Amparo Chiralt, Chelo Gonzalez-Martınez