Contents
18.10.2021.
Original scientific paper
Characterization of pasteurized milk spoilage by electronic nose in relation to its selected quality parameters
Pasteurized fresh milk requires an accurate estimation of shelf life under various conditions to minimize the risk of spoilage and product losses. Milk samples were stored for 56 h in an oven at 25°C and for 15 days in a refrigerator at 4°C. Samples were analyzed using an electronic nose (e-nose), total bacterial count, titratable acidity and pH to determine the quality of milk. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were used to analyze e-nose data of milk stored at 25°C, and 4°C. A clear shift in quality was identified by the e-nose, which also appeared in the total bacterial count after 24 h and 12 days for storage at 25 and 4°C, respectively. On the other hand, titratable acidity exceeded the normal limits of 0.14 % - 0.21 % after 24 h for storage at 25°C (0.247 ± 0.006 %) and after 15 days for storage at 4°C (0.25 ± 0.01 %). If pH was a good indicator of quality for samples stored at 25°C, it showed no clear trends for samples stored at 4°C. Based on the microbial count data and e-nose output, the milk had a shelf life of 0.3 day (i.e. 8 h) when stored at 25°C. Shelf life was extended to 9 days when stored at 4°C.
Saleem Ehsan, Zahir Al-Attabi, Nasser Al-Habsi, Michel R. G. Claereboudt, Mohammad Shafiur Rahman
01.12.2018.
Professional paper
Moisture sorption isotherm and thermal characteristics of freeze-dried tuna
Water activity is considered an important factor in assessing the stability of food. Understanding the relationship between water activity and equilibrium moisture content (moisture sorption isotherm) benefits food processing in terms of modeling of drying and estimation of shelf life. In addition, glass transition helps to quantify molecular mobility which helps in determining the stability of food. The aim of this study was to determine the moisture sorption isotherm and thermal characteristics of freeze-dried tuna. These characteristics will help in determining the monolayer moisture and glassy state of the product, at which food is considered most stable. Moisture sorption isotherm at 20°C and thermal characteristics (over a wide temperature range i.e. from -90 to 250 °C) of freeze-dried tuna flesh were measured. Isotherm data were modeled by BET (Brunauer-Emmett-Teller) and GAB (Guggenheim-Anderson–De Boer) models. The GAB and BET monolayer water values were determined as 0.052 and 0.089 g g-1 dry-solids (dry-basis), respectively. In the case of samples at moisture contents above 0.10 g g-1 (wet basis), DSC (Differential Scanning Calorimetry) thermograms showed two-step state changes (i.e. two glass transitions), one exothermic peak (i.e. molecular ordering) and another endothermic peak (i.e. solids-melting). However, the sample at moisture content of 0.046 g g-1 showed three-step state changes (i.e. three glass transitions). The multiple glass transition could be explained by the natural heterogeneity of tuna flesh and inhomogeneity due to molecular incompatibility of the different compositions. The moisture content did not affect the first glass transition temperature nor the exothermic peak (p>0.05), whereas the third glass transition temperature decreased (i.e. plasticized) with increasing moisture content (p<0.05). The solids-melting peak temperature decreased, and enthalpy increased with decreasing moisture content (p<0.05).
Mohammad Shafiur Rahman, Mohammed Khalfan Al-Khusaibi, Kutaila Abbas AL-Farsi, Ismail Mohamed Al-Bulushi, Aisha Abushelaibi, Nasser Al-Habsi
01.12.2018.
Professional paper
Stability of vitamin C in broccoli at different storage conditions
In this study, the retention of vitamin C in fresh broccoli stored at different temperatures (i.e. chiller, room, cooking, and roasting or baking; 5-120°C) was investigated. The thermal stability of vitamin C in broccoli was analysed at 5, 20, 45, 60, 70, 80, 110, and 120°C. The vitamin C content was measured by the indophenol titration method. Vitamin C was affected negatively at all stored temperatures. The degradation of vitamin C was modelled by first-order reaction kinetics and the reaction rate constants were observed as 9.03×10-8 and 5.65×10-3 s-1 when stored at 5°C and 120°C, respectively. The activation energy was estimated as 74.2 kJ/mol within the temperature range used in this study. The lowest decay of vitamin C was observed during the chilling condition. The data on retention of vitamin C in broccoli could be used to determine their stability, when stored as raw, and when heated at different temperatures.
Nasser Al-Habsi, Sithara Suresh, Amani Al-Yhmedi, Marwa Al-Shoryani, Mostafa I. Waly, Mohammad Shafiur Rahman