Current issue

Volume 13, Issue 2, 2024
Online ISSN: 2182-1054
Volume 13 , Issue 2, (2024)
Published: 18.10.2024.
Open Access
All issues
Contents
18.04.2018.
Original scientific paper
Use of response surface methodology (RSM) for composite blends of low grade broken rice fractions and full-fat soybean flour by a twin-screw extrusion cooking process
In this study, seventeen (17) composite blends of broken rice fractions and full-fat soybean, formulated using response surface methodology and central composite design within a range of barrel temperatures (100-140oC), initial feed moisture content (15-25%) and soybean composition (8-24%), were extruded with a twin-screw extruder and the expansion and color indices were optimized. The results indicated a significant (p<0.05) effect of extrusion conditions on the responses. Fitted predictive models had coefficients of 88.9%, 95.7%, 97.3%, 95.4% and 95.2%, respectively, for expansion index, bulk density, lightness, redness and yellowness. The p-value and lack-of-fit tests of the models could well explain the observed variability and therefore could be used to establish production setting for the twin-screw extruder. The optimum extrusion conditions were found to be 130 oC (barrel temperature), 20% (feed moisture level) and 23% feed soybean composition and optimum responses in terms of bulk density, expansion index, lightness, redness and yellowness chroma indices were 0.21 g cm−3 , 128.9%, 17.1, 3.13 and 24.5, respectively. This indicates that optimum conditions can be established in twinscrew extrusion cooking of broken rice fractions and full-fat soybean composite blends that can result in product of low bulk and maximum expansion with a satisfactory light yellow product color that can be used to produce products that valorize broken rice and reduce qualitative postharvest loss.
DANBABA NAHEMIAH, Iro Nkama, Mamudu Halidu Badau