Current issue

Volume 13, Issue 2, 2024
Online ISSN: 2182-1054
Volume 13 , Issue 2, (2024)
Published: 18.10.2024.
Open Access
All issues
Contents
18.04.2021.
Original scientific paper
Continuous Stirred Tank Reactor: A Process Design for Interesterification of Macauba (Acrocomia aculeata) palm oil
Other than the edible oils extracted from the Acrocomia aculeata fruit, there is a growing interest in the palm to generate other high value-added products. Relatively high amounts of carotenoids (up to 378 mg kg-1) have been found in the esculent oils mechanically obtained from the fruit mesocarp. From industrial application perspectives, several processes have been proposed to modify native vegetable oils to yield high functional properties of structured lipids. For interesterified products, the thermal effects of industrial reactors are crucial in reaction mechanisms. The present study has taken into account previously estimated kinetic parameters for the overall disappearances of all-trans β-carotene in the Acrocomia aculeata oil (ko= 2.6 x 10-4 min-1; Ea = 105.0003 kJ mol-1; ΔH = 9.8 x 104 J kg-1) to develop a continuous stirred tank reactor (CSTR) kinetic treatment that obeys first-order kinetics. A system of ordinary dierential equations - mass and energy balances - was solved by the 4th order Runge-Kutta method (GNU Octave software). Under research conditions related to interesterification processing (2 h; 393.15 K), the initial concentration of carotenoids (around 11%) showed no significant decrease. Overall, realistic processing effects and conditions have been assessed, integrating results and knowledge, improving prospects of Acrocomia aculeata as a promising source of high-quality raw material, for producing functional ingredients and food with nutraceutical properties.
Pedro Valério, Isabella Fonseca Araujo, Juan Canellas Bosch Neto, Jesus Maria Frias Celayeta, Erika Cristina Cren
18.05.2021.
Original scientific paper
Thermal Degradation of β-Carotene from Macauba Palm: Mathematical Modeling and Parameter Estimation
Worldwide, there is a current need for new sources of vegetable oils. The natural content of total carotenoids in Acrocomia aculeata palm oil (up to 378 µg.g-1) surpasses that of many other tropical fruits, making it one of its main compositional characteristics. As far as can be verified, there is no available information on the degradation kinetics of carotenoids for A. aculeata oil, which is required to describe reaction rates and to predict changes that can occur during food processing. The present study considered prediction abilities that have emerged with the use of specific kinetic data and procedures to understand thermal processing better, as an essential unity operation. Two kinetic mechanisms were proposed to describe the overall thermal degradation of carotenoids in the oil; the first one consists of three reaction steps while the other presents only one-step reaction. Mass balance equations were numerically solved by a Backward Differentiation Formula technique. The kinetic parameters from both models were estimated through a hybrid optimisation method using the Particle Swarm Optimization and the Gauss-Newton method, followed by statistical analyses. The model with more than one reaction was shown to be overparameterized and was discarded. The model with a single reaction was highly suited to handle the experimental data available, and the dependency of its rate constant on temperature was expressed according to Arrhenius law. As far we know, this is the first time the kinetics of carotenoids thermal degradation in A. aculeata oil is investigated through modelling simulation.
Pedro Prates Valério, Amanda Lemette Brandão, Jesus Maria Frias Celayeta, Erika Cristina Cren